FS1-9

Power Supply Analysis and Coping Strategy in Taiwan

Yi-Hsieh Huang Lung-Wu Chen Shau-Pin Hung

Taiwan Power Research Institute, Taiwan Power Company, Taipei, Taiwan

Abstract

This paper is to explore solutions which minimize generation cost while controlling Co_2 emission. It used Taiwan Power Company data in 2005. The multiple objective programming models with scenario analysis was applied to simulate cost based on different combinations of generation sources while maintaining the safety of power system operation and load characteristic of the power system.

The energy production reached 189.66 billion kWh to meet load demand in 2005, of this, to simulate it without considering Co_2 emission reduction, results show that 4.4 % came from hydro units (including renewable energy), 20.2 % from nuclear power units, 43.55% from coal units, 5.3% from oil units 19.85% from gas units and 6.7% from cogeneration. However, coal generation produced the highest amount of Co_2 emission out of all power sources. To minimize the amount of Co_2 emission cost, the change of the share of coal generation and gas generation depends on the emission price of Co_2 each ton due to the higher price of unit Co_2 emission of coal generation. That is, when Co_2 emission reduction came into force, energy generation cost goes higher and substitution effect will happen between related generation units.