

Abstract Format

Technologies reshaping the electricity supply industry 2017 IERE-TNB Putrajaya Workshop November 20-23, 2017

Improvement of CO₂ Dissolution in Microalgae Culture by Applications of Nano-Material

Liyana Yahya, Muhammad Nazry Chik, Afifi Zainal

Researcher, Emission and Waste Management Technology Group, Advanced Research Program, TNB Research Sdn. Bhd, Kajang, Malaysia

Keywords: CO₂ dissolution, flue gas, CO₂ fixation rate, inorganic carbon, nanomaterial

Abstract

Annual global emission of CO_2 has escalated by 80% due to increasing dependence on the combustion of fossil fuels. TNB Research (TNBR) is currently taking the initiative to explore the various technologies in reducing CO_2 emission from thermal power plants. One option is through the biological approach by using the CO_2 as the carbon source for the growth of photoautotrophic culture of microalgae. CO₂ supplied to the suspension culture of microalgae is first dissolved to the medium and utilized by the cells. As CO_2 supply rate is more than CO_2 consumption rate by the cells, most of supplied CO₂ escapes to the atmosphere. This project aims to enhance bio-fixation ability by incorporating nano-material approach to increase the dissolution of CO₂ thus enhancing the CO₂ fixation rate by the microalgae. Consortium marine microalgae species consist of Isochrysis sp., Chlorella sorokiniana sp., Chlorella pyreneidosa and Amphora sp. were used and the culturing condition was conducted using 6 X 250L outdoor photobioreactor using actual flue gas. CFD assessment was conducted to study the velocity vector in air-lift bubling reactor. Daily sampling was conducted to measure growth & fixation rate and total inorganic carbon as indication of the CO₂ dissolution in microalgae culture. Results indicates that the highest carbon fixation rate of 0.88 gCO2/L.day was achieved. In conclusion, nano-material able to increase dissolution of CO₂ in microalgae culture, proven by the increment of inorganic carbon in the microalgae culture. However issues such as pH drop, ionic strength and alkalinity need to be cater to further improve the nano-material performance towards enhanced fixation rate. Thus the finding shall be useful in exploring further the capabilities of nano-material approaches towards enhancing the microalgae fixation rate in neutralizing carbon emissions from power plants.